Comparative Effectiveness Research (CER), “Big Data” & Causality

Status

Comparative Effectiveness Research (CER), “Big Data” & Causality

For a number of years now, we’ve been concerned that the CER movement and the growing love affair with “big data,” will lead to many erroneous conclusions about cause and effect.  We were pleased to see the following blog from Austin Frakt, an editor-in-chief of The Incidental Economist: Contemplating health care with a focus on research, an eye on reform

Ten impressions of big data: Claims, aspirations, hardly any causal inference

http://theincidentaleconomist.com/wordpress/ten-impressions-of-big-data-claims-aspirations-hardly-any-causal-inference/

+

Five more big data quotes: The ambitions and challenges

http://theincidentaleconomist.com/wordpress/five-more-big-data-quotes/

Facebook Twitter Linkedin Digg Delicious Reddit Stumbleupon Tumblr Email

Cochrane Risk Of Bias Tool For Non-Randomized Studies

Status

Cochrane Risk Of Bias Tool For Non-Randomized Studies

Like many others, our position is that, with very few exceptions, cause and effect conclusions regarding therapeutic interventions can only be drawn when valid RCT data exists. However, there are uses for observational studies which may be used to answer additional questions, and non-randomized studies (NRS) are often included in systematic reviews.

In September 2014, Cochrane published a tool for assessing bias in NRS for systematic review authors [1]. It may be of interest to our colleagues. The tool is called ACROBAT-NRSI (“A Cochrane Risk Of Bias Assessment Tool for Non-Randomized Studies”) and is designed to assist with evaluating the risk of bias (RoB) in the results of NRS that compare the health effects of two or more interventions.

The tool focuses on internal validity. It covers seven domains through which bias might be introduced into a NRS. The domains provide a framework for considering any type of NRS, and are summarized in the table below, and many of the biases listed here are described and explanations of how they may cause bias are presented in the full document, and you can see our rough summary here: http://www.delfini.org/delfiniClick_Observations.htm#robtable

Response options for each bias include: low risk of bias; moderate risk of bias; serious risk of bias; critical risk of bias; and no information on which to base a judgment.

Details are available in the full document which can be downloaded at—https://sites.google.com/site/riskofbiastool/

Delfini Comment
We again point out that non-randomized studies often report seriously misleading results even when treated and control groups appear similar in prognostic variables and agree with Deeks that, for therapeutic interventions ,“non-randomised studies should only be undertaken when RCTs are infeasible or unethical”[2]—and even then, buyer beware. Studies do not get “validity grace” because of scientific or practical challenges.

Furthermore, we are uncertain that this tool is of great value when assessing NRS. Deeks [2] identified 194 tools that could be or had been used to assess NRS. Do we really need another one? While it’s a good document for background reading, we are more comfortable approaching the problem of observational data by pointing out that, when it comes to efficacy, high quality RCTs have a positive predictive value of about 85% whereas well-done observational trials have a positive predictive value of about 20% [3].

References

Sterne JAC, Higins JPT, Reves BC on behalf of the development group for ACROBAT- NRSI. A Cochrane Risk Of Bias Asesment Tol: for Non-Randomized Studies of Interventions (ACROBAT- NRSI), Version 1.0.0, 24 September 2014. Available from htp:/www.riskofbias.info [accessed 10/11/14.

Deeks JJ, Dinnes J, D’Amico R, Sowden AJ, Sakarovitch C, Song F, Petticrew M, Altman DG; International Stroke Trial Collaborative Group; European Carotid Surgery Trial Collaborative Group. Evaluating non-randomised intervention studies. Health Technol Assess. 2003;7(27):iii-x, 1-173. Review. PubMed PMID: 14499048.

Ioannidis JPA. Why Most Published Research Findings are False. PLoS Med 2005; 2(8):696-701 PMID: 16060722.

Facebook Twitter Linkedin Digg Delicious Reddit Stumbleupon Tumblr Email

Comparison of Risk of Bias Ratings in Clinical Trials—Journal Publications Versus Clinical Study Reports

Status

Comparison of Risk of Bias Ratings in Clinical Trials—Journal Publications Versus Clinical Study Reports

Many critical appraisers assess bias using tools such as the Cochrane risk of bias tool (Higgins 11) or tools freely available from us (http://www.delfini.org/delfiniTools.htm). Internal validity is assessed by evaluating important items such as generation of the randomization sequence, concealment of allocation, blinding, attrition and assessment of results.

Jefferson et al. recently compared the risk of bias in 14 oseltamivir trials using information from previous assessments based on the study publications and the newly acquired, more extensive clinical study reports (CSRs) obtained from the European Medicines Agency (EMA) and the manufacturer, Roche.

Key findings include the following:

  • Evaluations using more complete information from the CSRs resulted in no difference in the number of previous assessment of “high” risk of bias.
  • However, over half (55%, 34/62) of the previous “low” risk of bias ratings were reclassified as “high.”
  • Most of the previous “unclear” risk of bias ratings (67%, 28/32) were changed to “high” risk of bias ratings when CSRs were available.

The authors discuss the idea that the risk of bias tools are important because they facilitate the process of critical appraisal of medical evidence. They also call for greater availability of the CSRs as the basic unit available for critical appraisal.

Delfini Comment

We believe that both sponsors and researchers need to provide more study detail so that critical appraisers can provide more precise ratings of risk of bias. Study publications frequently lack information needed by critical appraisers.

We agree that CSRs should be made available so they can be used to improve their assessments of clinical trials.  However, our experience has been the opposite of that experienced by the authors.  When companies have invited us to work with them to assess the reliability of their studies and made CSRs available to us, frequently we have found important information not otherwise available in the study publication.  When this happens, studies otherwise given a rating at higher risk of bias have often been determined to be at low risk of bias and of high quality.

References

1. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA; Cochrane Bias Methods Group; Cochrane Statistical  Methods Group. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011 Oct 18;343:d5928. doi: 10.1136/bmj.d5928. PubMed PMID: 22008217.

2. Jefferson T, Jones MA, Doshi P, Del Mar CB, Hama R, Thompson MJ, Onakpoya I, Heneghan CJ. Risk of bias in industry-funded oseltamivir trials: comparison of core reports versus full clinical study reports. BMJ Open. 2014 Sep 30;4(9):e005253. doi: 10.1136/bmjopen-2014-005253. PubMed PMID: 25270852.

Facebook Twitter Linkedin Digg Delicious Reddit Stumbleupon Tumblr Email