Network Meta-analyses—More Complex Than Traditional Meta-analyses


Network Meta-analyses—More Complex Than Traditional Meta-analyses

Meta-analyses are important tools for synthesizing evidence from relevant studies. One limitation of traditional meta-analyses is that they can compare only 2 treatments at a time in what is often termed pairwise or direct comparisons. An extension of traditional meta-analysis is the “network meta-analysis” which has been increasingly used—especially with the rise of the comparative effectiveness movement—as a method of assessing the comparative effects of more than two alternative interventions for the same condition that have not been studied in head-to-head trials.

A network meta-analysis synthesizes direct and indirect evidence over the entire network of interventions that have not been directly compared in clinical trials, but have one treatment in common.

A clinical trial reports that for a given condition intervention A results in better outcomes than intervention B. Another trial reports that intervention B is better than intervention C. A network meta-analysis intervention is likely to report that intervention A results in better outcomes than intervention C based on indirect evidence.

Network meta-analyses, also known as “multiple-treatments meta-analyses” or “mixed-treatment comparisons meta-analyses” include both direct and indirect evidence. When both direct and indirect comparisons are used to estimate treatment effects, the comparison is referred to as a “mixed comparison.” The indirect evidence in network meta-analyses is derived from statistical inference which requires many assumptions and modeling. Therefore, critical appraisal of network meta-analyses is more complex than appraisal of traditional meta-analyses.

In all meta-analyses, clinical and methodological differences in studies are likely to be present. Investigators should only include valid trials. Plus they should provide sufficient detail so that readers can assess the quality of meta-analyses. These details include important variables such as PICOTS (population, intervention, comparator, outcomes, timing and study setting) and heterogeneity in any important study performance items or other contextual issues such as important biases, unique care experiences, adherence rates, etc. In addition, the effect sizes in direct comparisons should be compared to the effect sizes in indirect comparisons since indirect comparisons require statistical adjustments. Inconsistency between the direct and indirect comparisons may be due to chance, bias or heterogeneity. Remember, in direct comparisons the data come from the same trial. Indirect comparisons utilize data from separate randomized controlled trials which may vary in both clinical and methodological details.

Estimates of effect in a direct comparison trial may be lower than estimates of effect derived from indirect comparisons. Therefore, evidence from direct comparisons should be weighted more heavily than evidence from indirect comparisons in network meta-analyses. The combination of direct and indirect evidence in mixed treatment comparisons may be more likely to result in distorted estimates of effect size if there is inconsistency between effect sizes of direct and indirect comparisons.

Usually network meta-analyses rank different treatments according to the probability of being the best treatment. Readers should be aware that these rankings may be misleading because differences may be quite small or inaccurate if the quality of the meta-analysis is not high.

Delfini Comment
Network meta-analyses do provide more information about the relative effectiveness of interventions. At this time, we remain a bit cautious about the quality of many network meta-analyses because of the need for statistical adjustments. It should be emphasized that, as of this writing, methodological research has not established a preferred method for conducting network meta-analyses, assessing them for validity or assigning them an evidence grade.

Li T, Puhan MA, Vedula SS, Singh S, Dickersin K; Ad Hoc Network Meta-analysis Methods Meeting Working Group. Network meta-analysis-highly attractive but more methodological research is needed. BMC Med. 2011 Jun 27;9:79. doi: 10.1186/1741-7015-9-79. PubMed PMID: 21707969.

Salanti G, Del Giovane C, Chaimani A, Caldwell DM, Higgins JP. Evaluating the quality of evidence from a network meta-analysis. PLoS One. 2014 Jul 3;9(7):e99682. doi: 10.1371/journal.pone.0099682. eCollection 2014. PubMed PMID: 24992266.

Facebook Twitter Linkedin Digg Delicious Reddit Stumbleupon Tumblr Email